

The 24th International Mass Spectrometry Conference

Targeted deconvolution feature extraction and annotation via time-domain transient modelling in Orbitrap FTMS for biopharma applications

Yury Tsybin,¹ Anton Kozhinov,¹ Natalia Gasilova,² Laure Menin,² Luca Fornelli,³ and Konstantin Nagornov¹

Spectroswiss, Lausanne, Switzerland
 EPFL, Lausanne, Switzerland
 University of Oklahoma, USA

Talk #379 on August 30, 2022 at 12:20

Spectroswiss

Deconvolution in the Structural Analysis of mAbs / ADCs

Intact mass proteoform heterogeneity

Middle-up: subunit analysis for proteoform heterogeneity

Middle-down MS/MS: amino-acid level analysis of subunits

Top-Down MS/MS: amino-acid level analysis of mAbs

Intact Mass Measurements of mAbs: Low-Resolution Workflow

REPORT

Annotation
Relative %

Intact Mass Measurements of mAbs: Low-Resolution Workflow

REPORT

Annotation
Relative %

Middle-Up of mAbs Subunits: High/Low-Resolution Workflow

REPORT

Annotation
Relative %

FTMS Data Simulation Approaches

Isotopic distribution calculation from elemental composition

Isotopic beats of mAbs?

Peak interference?

Computational speed?

Nagornov et al.: Small proteins: JASMS 2020, 31, 1927–1942; Large proteins: JASMS 2022, 33, 1113–1125

Profile Library Simulations for mAbs: Low Resolution

Spectroswiss

- Automatically determine FTMS instrument model and settings from metadata
- Specify a database of target compounds (from small molecules to proteins)
- Suggest adducts, modifications, charge carriers, and charge states

Spectroswiss Correlate Experimental and Simulated Data: Low-Res

- Isotopic envelopes are compared for each charge state (no deconvolution, similarity)
- Charge state distributions are used to filter out the false positives
- Selected Ion Current (SIC) chromatograms show proteoform-specific elution periods

Implementation example: Peak-by-Peak BioPharma (Spectroswiss)

Targeted & Untargeted Deconvolution: Low Resolution Spectroswiss

Drug-to Antibody Ratios (DARs) for Antibody Drug Conjugates (ADCs)

Targeted approach eliminates the need to perform a sliding window-based deconvolution

Profile Library Simulations for Subunits: High-Res

Isotopically resolved envelopes

Spectroswiss Correlate Experimental and Simulated Data: High-Res

Targeted & Untargeted Deconvolution: High Resolution

Untargeted deconvolution of the isotopically-resolved MS data: FLASHDeconv, Hardklor, ...

Spectroswiss

Targeted Deconvolution: High Resolution & Low Abundance

Spectroswiss

Conclusions & Outlook

- Targeted deconvolution based on FTMS time-domain transient modelling: a new tool
- The developed approach is successfully benchmarked for biopharma applications
- An easy to understand approach, facile manual curation, and suitable for automation
- Approach appears useful for intact, subunit, and peptide level analysis of mAbs/ADC
- High speed of calculations: computationally-efficient python-based implementation
- Accuracy of isotopic envelopes modelling importance: do we need transients?
- Targeted and untargeted deconvolution: solo or duet?
- Other MS application areas: analysis of proteoform mixtures, metabolomics, imaging
- Other MS/MS application areas: targeted bottom-up, middle-down, top-down

Powerful computational approaches & resources create new opportunities in MS

Project number: 829157